hello大家好,我是本站的小编子芊,今天来给大家介绍一下深度学习编程基础的相关知识,希望能解决您的疑问,我们的知识点较多,篇幅较长,还希望您耐心阅读,如果有讲得不对的地方,您也可以向我们反馈,我们及时修正,如果能帮助到您,也请你收藏本站,谢谢您的支持!

深度学习编程基础

深度学习是机器学习领域中的一个重要分支,它通过模拟人脑神经网络的方式,可以实现对大规模数据的自动特征提取和模式识别。深度学习的应用非常广泛,包括自然语言处理、计算机视觉、语音识别等。

深度学习编程基础是入门深度学习的第一步,它包括了深度学习的基本概念、理论知识和常用算法。了解深度学习的基本概念是必要的,例如神经网络、激活函数、损失函数等。学习深度学习的理论知识,例如反向传播算法、梯度下降优化算法等。掌握深度学习常用的算法,例如卷积神经网络、循环神经网络等。

深度学习编程基础的学习可以选择使用Python编程语言及其相关开源库,例如TensorFlow、PyTorch等。Python具有简洁易懂的语法和丰富的第三方库,非常适合进行深度学习的开发。这些开源库提供了许多已经实现好的深度学习算法和模型,可以节省编程人员的开发时间。

在学习深度学习编程基础的过程中,有一些重要的实践经验需要掌握。要选择合适的数据集进行训练和测试,数据集的质量和多样性对于模型的训练效果至关重要。要进行合适的数据预处理,例如归一化、去噪等,以提高模型的鲁棒性和泛化能力。要进行合适的模型调参,例如学习率、批次大小等超参数的选择,以优化模型的性能。

深度学习编程基础的学习不仅仅是技术层面上的学习,还需培养对问题的分析和解决能力。在实际应用中,深度学习编程往往需要将算法理论与实际问题相结合,才能取得良好的效果。

深度学习编程基础是学习深度学习的第一步,通过掌握深度学习的基本概念、理论知识和常用算法,以及实践经验的积累,可以为进一步深入学习深度学习打下坚实的基础。

深度学习编程基础

数学基础

如果你能够顺畅地读懂深度学习论文中的数学公式,可以独立地推导新方法,则表明你已经具备了必要的数学基础。

掌握数学分析、线性代数、概率论和凸优化四门数学课程包含的数学知识,熟知机器学习的基本理论和方法,是入门深度学习技术的前提。因为无论是理解深度网络中各个层的运算和梯度推导,还是进行问题的形式化或是推导损失函数,都离不开扎实的数学与机器学习基础。

数学分析

在工科专业所开设的高等数学课程中,主要学习的内容为微积分。对于一般的深度学习研究和应用来说,需要重点温习函数与极限、导数(特别是复合函数求导)、微分、积分、幂级数展开、微分方程等基础知识。在深度学习的优化过程中,求解函数的一阶导数是最为基础的工作。当提到微分中值定理、Taylor公式和拉格朗日乘子的时候,你不应该只是感到与它们似曾相识。

线性代数

深度学习中的运算常常被表示成向量和矩阵运算。线性代数正是这样一门以向量和矩阵作为研究对象的数学分支。需要重点温习的包括向量、线性空间、线性方程组、矩阵、矩阵运算及其性质、向量微积分。当提到Jacobian矩阵和Hessian矩阵的时候,你需要知道确切的数学形式;当给出一个矩阵形式的损失函数时,你可以很轻松的求解梯度。

概率论

概率论是研究随机现象数量规律的数学分支,随机变量在深度学习中有很多应用,无论是随机梯度下降、参数初始化方法(如Xavier),还是Dropout正则化算法,都离不开概率论的理论支撑。除了掌握随机现象的基本概念(如随机试验、样本空间、概率、条件概率等)、随机变量及其分布之外,还需要对大数定律及中心极限定理、参数估计、假设检验等内容有所了解,进一步还可以深入学习一点随机过程、马尔可夫随机链的内容。

凸优化

结合以上三门基础的数学课程,凸优化可以说是一门应用课程。但对于深度学习而言,由于常用的深度学习优化方法往往只利用了一阶的梯度信息进行随机梯度下降,因而从业者事实上并不需要多少“高深”的凸优化知识。理解凸集、凸函数、凸优化的基本概念,掌握对偶问题的一般概念,掌握常见的无约束优化方法如梯度下降方法、随机梯度下降方法、Newton方法,了解一点等式约束优化和不等式约束优化方法,即可满足理解深度学习中优化方法的理论要求。

机器学习

归根结底,深度学习只是机器学习方法的一种,而统计机器学习则是机器学习领域事实上的方法论。以监督学习为例,需要你掌握线性模型的回归与分类、支持向量机与核方法、随机森林方法等具有代表性的机器学习技术,并了解模型选择与模型推理、模型正则化技术、模型集成、Bootstrap方法、概率图模型等。深入一步的话,还需要了解半监督学习、无监督学习和强化学习等专门技术。

深度学习基础教程

《Python深度学习》([美] 弗朗索瓦肖莱)电子书网盘下载免费在线阅读

资源链接:

链接 https//pan.baidu.com/s/1KuCSBGVBh57Zr1va4FSlgg提取码 3qx5

书名:Python深度学习

作者:[美] 弗朗索瓦肖莱

译者:张亮

豆瓣评分:9.6

出版社:人民邮电出版社

出版年份:2018-8

页数:292

内容简介:

本书由Keras之父、现任Google人工智能研究员的弗朗索瓦肖莱(Franois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。

作者简介:

【作者简介】

弗朗索瓦肖莱(Francois Chollet)

Keras之父,TensorFlow机器学习框架贡献者,Kaggle竞赛教练,个人Kaggle竞赛全球排名曾获得第17名。目前任职于Google,从事人工智能研究,尤其关注计算机视觉与机器学习在形式推理方面的应用。

【译者简介】

张亮(hysic)

毕业于北京大学物理学院,爱好机器学习和数据分析的核安全工程师,译有《Python数据处理》《Python机器学习基础教程》等。

编程深度学习

各种编程语言的深度学习库整理大全!

Python1. Theano是一个python类库,用数组向量来定义和计算数学表达式。它使得在Python环境下编写深度学习算法变得简单。在它基础之上还搭建了许多类库。

1.Keras是一个简洁、高度模块化的神经网络库,它的设计参考了Torch,用Python语言编写,支持调用GPU和CPU优化后的Theano运算。

2.Pylearn2是一个集成大量深度学习常见模型和训练算法的库,如随机梯度下降等。它的功能库都是基于Theano之上。

3.Lasagne是一个搭建和训练神经网络的轻量级封装库,基于Theano。它遵循简洁化、透明化、模块化、实用化和专一化的原则。

4.Blocks也是一个基于Theano的帮助搭建神经网络的框架。

2. Caffe是深度学习的框架,它注重于代码的表达形式、运算速度以及模块化程度。它是由伯克利视觉和学习中心(Berkeley Vision and Learning Center, BVLC)以及社区成员共同开发。谷歌的DeepDream项目就是基于Caffe框架完成。这个框架是使用BSD许可证的C++库,并提供了Python调用接口。

3. nolearn囊括了大量的现有神经网络函数库的封装和抽象接口、大名鼎鼎的Lasagne以及一些机器学习的常用模块。

4. Genism也是一个用Python编写的深度学习小工具,采用高效的算法来处理大规模文本数据。

5. Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。

6. deepnet是基于GPU的深度学习算法函数库,使用Python语言开发,实现了前馈神经网络(FNN)、受限玻尔兹曼机(RBM)、深度信念网络(DBN)、自编码器(AE)、深度玻尔兹曼机(DBM)和卷积神经网络(CNN)等算法。

7. Hebel也是深度学习和神经网络的一个Python库,它通过pyCUDA控制支持CUDA的GPU加速。它实现了最重要的几类神经网络模型,提供了多种激活函数和模型训练方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。

8. CXXNET是一个基于MShadow开发的快速、简洁的分布式深度学习框架。它是一个轻量级、易扩展的C++/CUDA神经网络工具箱,提供友好的Python/Matlab接口来进行训练和预测。

9. DeepPy是基于NumPy的深度学习框架。

10. DeepLearning是一个用C++和Python共同开发的深度学习函数库。

11. Neon是Nervana System 的深度学习框架,使用Python开发。

Matlab

1. ConvNet 卷积神经网络是一类深度学习分类算法,它可以从原始数据中自主学习有用的特征,通过调节权重值来实现。

2. DeepLearnToolBox是用于深度学习的Matlab/Octave工具箱,它包含深度信念网络(DBN)、栈式自编码器(stacked AE)、卷积神经网络(CNN)等算法。

3. cuda-convet是一套卷积神经网络(CNN)代码,也适用于前馈神经网络,使用C++/CUDA进行运算。它能对任意深度的多层神经网络建模。只要是有向无环图的网络结构都可以。训练过程采用反向传播算法(BP算法)。

4. MatConvNet是一个面向计算机视觉应用的卷积神经网络(CNN)Matlab工具箱。它简单高效,能够运行和学习最先进的机器学习算法。

CPP

1. eblearn是开源的机器学习C++封装库,由Yann LeCun主导的纽约大学机器学习实验室开发。它用基于能量的模型实现卷积神经网络,并提供可视化交互界面(GUI)、示例以及示范教程。

2. SINGA是Apache软件基金会支持的一个项目,它的设计目标是在现有系统上提供通用的分布式模型训练算法。

3. NVIDIA DIGITS是用于开发、训练和可视化深度神经网络的一套新系统。它把深度学习的强大功能用浏览器界面呈现出来,使得数据科学家和研究员可以实时地可视化神经网络行为,快速地设计出最适合数据的深度神经网络。

4. Intel? Deep Learning Framework提供了Intel?平台加速深度卷积神经网络的一个统一平台。

Java

1. N-Dimensional Arrays for Java (ND4J) 是JVM平台的科学计算函数库。它主要用于产品中,也就是说函数的设计需求是运算速度快、存储空间最省。

2. Deeplearning4j 是第一款商业级别的开源分布式深度学习类库,用Java和Scala编写。它的设计目的是为了在商业环境下使用,而不是作为一款研究工具。

3. Encog是一个机器学习的高级框架,涵盖支持向量机、人工神经网络、遗传编程、贝叶斯网络、隐马可夫模型等,也支持遗传算法。

JavaScript

1. Convnet.js 由JavaScript编写,是一个完全在浏览器内完成训练深度学习模型(主要是神经网络)的封装库。不需要其它软件,不需要编译器,不需要安装包,不需要GPU,甚至不费吹灰之力。

Lua

1. Torch是一款广泛适用于各种机器学习算法的科学计算框架。它使用容易,用快速的脚本语言LuaJit开发,底层是C/CUDA实现。Torch基于Lua编程语言。

Julia

1. Mocha是Julia的深度学习框架,受C++框架Caffe的启发。Mocha中通用随机梯度求解程序和通用模块的高效实现,可以用来训练深度/浅层(卷积)神经网络,可以通过(栈式)自编码器配合非监督式预训练(可选)完成。它的优势特性包括模块化结构、提供上层接口,可能还有速度、兼容性等更多特性。

Lisp

1. Lush(Lisp Universal Shell)是一种面向对象的编程语言,面向对大规模数值和图形应用感兴趣的广大研究员、实验员和工程师们。它拥有机器学习的函数库,其中包含丰富的深度学习库。

Haskell

1. DNNGraph是Haskell用于深度神经网络模型生成的领域特定语言(DSL)。

.NET

1. Accord.NET 是完全用C#编写的.NET机器学习框架,包括音频和图像处理的类库。它是产品级的完整框架,用于计算机视觉、计算机音频、信号处理和统计应用领域。

R

1. darch包可以用来生成多层神经网络(深度结构)。训练的方法包括了对比散度的预训练和众所周知的训练算法(如反向传播法或共轭梯度法)的细调。

2. deepnet实现了许多深度学习框架和神经网络算法,包括反向传播(BP)、受限玻尔兹曼机(RBM)、深度信念网络(DBP)、深度自编码器(Deep autoencoder)等等。

编程基础学习

学习编程的基础:

1、英语基础虽然对于初级程序员来说,英语只需要写简单的词汇就可以,但是如果想要走的更远,还是要去学习和掌握。我极力推荐英语是因为在学习IT技术上,没有专业文档的阅读能力是不可想象的,中文的翻译往往在猴年马月才会出来,而现在的许多出版社干脆就直接把英文印刷上去,学习的方法是强迫自己看原版的教材,开始会看不懂,用多了自然熟练,吃得苦下得狠心绝对是任何行业都需要的品质。相信只要有几年工作经验的人都会深有感触!

2、计算机体系结构和汇编语言关于体系结构的书遍地都是,而且也大同小异,倒是汇编有一本非常好的书《80x86汇编语言程序设计教程》(清华大学出版社,黑色封面,杨季文著),你需要着重学习386后保护模式的程序设计。否则你在学习现代操作系统底层的一些东西的时候会觉得是在看天书。

3、计算机操作系统原理我们的开发总是在特定的操作系统上进行,如果不是,只有一种可能:你在自己实现一个操作系统,操作系统原理是必读的。这就象我们为一个芯片制作外围设备时,芯片基本的工作时序是必需了解的。这一类书也很多,我没有发现哪一本书非常出众,只是觉得在看完了这些书后如果有空就应该看看《Inside Windows 2000》。

4、数据结构和算法

这门课程能够决定一个人程序设计水平的高低,是一门核心课程。我首选的是清华版的。很多人喜欢买C++版的,但我觉得没有必要,C++的语法让算法实现过程变得复杂多了,而且许多老师喜欢用模块这一东西让算法变得更复杂,倒是在学完了C版的书以后再来浏览一下C++的版的书是最好的。

5、软件工程

这门课程是越到后来就越发现它的重要,虽然刚开始看时就象看马哲一样不知所云。《实用软件工程》(黄色,清华)。不要花太多的时间去记条条框框,看不懂就跳过去。在每次自己完成了一个软件设计任务(不管是练习还是工作)以后再来回顾回顾,每次都会有收获。

6、Windows 程序设计

我建议任何企图设计Windows程序的人在学习VC以前仔细的学完它,而且前面的那本《Inside Windows 2000》也最好放到这本书的后面读。在这本书中,没有C++,没有GUI,没有控件,有的就是如何用原始的C语言来完成Windows程序设计。

在学完了它以后,你才会发现VC其实是很容易学的,千万不要在没有看完这本书以前提前学习VC,你最好碰都不要碰,我知道的许多名校甚至都已经用它作为教材进行授课。可见其重要。

深度学习

随着阿尔法狗、无人驾驶、智能翻译的横空出世,“人工智能”这个已经存在60多年的词语,仿佛一夜之间重新成为热词。同时被科技圈和企业界广泛提及的还有“机器学习”“深度学习”“神经网络”…… 但事实是,如此喧嚣热烈的气氛之下,大部分人对这一领域仍是一知半解。

如果要说谁有资格谈论目前正在进行的“人工智能革命”,特伦斯·谢诺夫斯基(Terry Sejnowski)必然是其中一个。

在智能翻译、无人驾驶、阿尔法狗、微软小冰还被认为是远在天边的愿景时,谢诺夫斯基就已经在为深度学习领域奠定基础了。Professor Terry Sejnowski.

Image Salk Institute

谢诺夫斯基是20世纪80年代挑战构建人工智能主流方法的一小撮研究人员之一。受大脑生物学启发的、那些被称为“神经网络”“连接主义”和“并行分布处理”的AI实现方法,会最终解决困扰基于逻辑的AI研究的难题,从而提出了使用可以从数据中学习技能的数学模型。正是这一小群研究人员,证明了基于大脑式的计算的全新方法是可行的,从而为“深度学习”的发展奠定了基础。

借由《深度学习:智能时代的核心驱动力量》一书出版机会,美国科技媒体《The Verge》采访了特伦斯·谢诺夫斯基,与他讨论了“人工智能”“神经网络”“深度学习”“机器学习”究竟有何区别?为何“深度学习”突然变得无处不在,它能做什么?不能做什么?以下是采访全文:《深度学习:智能时代的核心驱动力量》

中信出版集团 2019.2

Q:我想问一下定义。人们几乎可以互换地使用“人工智能”,“神经网络”,“深度学习”和“机器学习”等词语。 但这些是不同的东西。你能解释一下吗?

人工智能可以追溯到1956年的美国,那时工程师们决定编写一个试图仿效智能的计算机程序。

在人工智能中,一个新领域成长起来,称为机器学习。不是编写一个按部就班的程序来做某事——这是人工智能中的传统方法——而是你收集了大量关于你试图理解的事物的数据。设想您正在尝试识别对象,因此您可以收集大量它们的图像。通过机器学习,这是一个可以剖析各种特征的自动化过程,就可以确定一个物体是汽车,而另一个是订书机。

机器学习是一个非常大的领域,其历史可以追溯到更久远的时期。最初,人们称之为“模式识别”。后来算法在数学上变得更加广泛和复杂。

在机器学习中有受大脑启发的神经网络,然后是深度学习。深度学习算法具有特定的体系结构,其中有许多层数据流经的网络。

基本上,深度学习是机器学习的一部分,机器学习是人工智能的一部分。

Q 有什么“深度学习”能做而其他程序不能做的吗?

编写程序非常耗费人力。在过去,计算机是如此之慢,内存非常昂贵,以至于人们采用逻辑,也就是计算机的工作原理,来编写程序。他们通过基础机器语言来操纵信息。计算机太慢了,计算太贵了。

但计算力越来越便宜,劳动力也越来越昂贵。而且计算力变得如此便宜,以至于慢慢地,让计算机学习会比让人类编写程序更有效。在那时,深度学习会开始解决以前没有人编写过程序的问题,比如在计算机视觉和翻译等领域。

机器学习是计算密集型的,但你只需编写一个程序,通过给它不同的数据集,你可以解决不同的问题。并且你不需要是领域专家。对于存在大量数据的任何事物,都有对应的大量应用程序。

Q:“深度学习”现在似乎无处不在。 它是如何变得如此主导潮流?

我可以在历史上精确地找到这一特定时刻:2012年12月在NIPS会议(这是最大的AI会议)上。在那里,计算机科学家Geoff Hinton和他的两个研究生表明你可以使用一个名为ImageNet的非常大的数据集,包含10,000个类别和1000万个图像,并使用深度学习将分类错误减少20%。

通常,在该数据集上,错误在一年内减少不到1%。 在一年内,20年的研究被跨越了。

这真的打开了潮水的闸门。

Q:深度学习的灵感来自大脑。那么计算机科学和神经科学这些领域如何协同工作呢?

深度学习的灵感来自神经科学。最成功的深度学习网络是由Yann LeCun开发的卷积神经网络(CNN)。

如果你看一下CNN的架构,它不仅仅是很多单元,它们以一种基本上镜像大脑的方式连接起来。大脑中被研究的最好的一部分在视觉系统,在对视觉皮层的基础研究工作中,表明那里存在简单和复杂细胞。如果你看一下CNN架构,会发现有简单细胞和复杂细胞的等价物,这直接来自我们对视觉系统的理解。

Yann没有盲目地试图复制皮质。他尝试了许多不同的变种,但他最终收敛到的方式和那些自然收敛到的方式相同。这是一个重要的观察。自然与人工智能的趋同可以教给我们很多东西,而且还有更多的东西要去探索。

Q:我们对计算机科学的理解有多少取决于我们对大脑的理解程度?

我们现在的大部分AI都是基于我们对大脑在60年代的了解。 我们现在知道的更多,并且更多的知识被融入到架构中。

AlphaGo,这个击败围棋冠军的程序不仅包括皮质模型,还包括大脑的一部分被称为“基底神经节”的模型,这对于制定一系列决策来实现目标非常重要。 有一种称为时间差分的算法,由Richard Sutton在80年代开发,当与深度学习相结合时,能够进行人类以前从未见过的非常复杂的玩法。

当我们了解大脑的结构,并且当我们开始了解如何将它们集成到人工系统中时,它将提供越来越多的功能,超越我们现在所拥有的。

Q:人工智能也会影响神经科学吗?

它们是并行的工作。创新神经技术已经取得了巨大的进步,从一次记录一个神经元到同时记录数千个神经元,并且同时涉及大脑的许多部分,这完全开辟了一个全新的世界。

我说人工智能与人类智能之间存在着一种趋同。随着我们越来越多地了解大脑如何工作,这些认识将反映到AI中。 但与此他们实际上创造了一整套学习理论,可用于理解大脑,让我们分析成千上万的神经元以及他们的活动是如何产生的。 所以神经科学和人工智能之间存在这种反馈循环,我认为这更令人兴奋和重要。

Q:你的书讨论了许多不同的深度学习应用,从自动驾驶汽车到金融交易。你觉得哪个特定领域最有趣?

我完全被震撼到的一个应用是生成对抗网络,或称GANS。使用传统的神经网络,你给出一个输入,你得到一个输出。 GAN能够在没有输入的情况下开展活动 - 产生输出。

是的,我在这些网络创建假视频的故事背景下听说过这个。他们真的会产生看似真实的新事物,对吧?

从某种意义上说,它们会产生内部活动。事实证明这是大脑运作的方式。你可以看某处并看到一些东西,然后你可以闭上眼睛,你可以开始想象出那里没有的东西。你有一个视觉想象,当周围安静时,你闹钟声会浮现想法。那是因为你的大脑是生成性的。这种新型网络可以生成从未存在过的新模式。所以你可以给它,数百张汽车图像,它会创建一个内部结构,可以生成从未存在的汽车的新图像,并且它们看起来完全像汽车。

Q:另一方面,您认为哪些想法可能是过度炒作?

没有人可以预测或想象这种新技术的引入会对未来的事物组织方式产生什么影响。当然这其中有炒作。我们还没有解决真正困难的问题。我们还没有通用智能,就有人说机器人将不久后会取代我们,其实机器人远远落后于人工智能,因为复制身体被发现比复制大脑更复杂。

让我们看一下这一种技术进步:激光。它是在大约50年前发明的,当时占据了整个房间。从占据整个房间到我现在演讲时使用的激光笔需要50年的技术商业化。它必须被推进到体积足够小并可以用五美元购买它的程度。同样的事情将发生在像自动驾驶汽车这样的被炒作的技术上。它并不被期望在明年或者未来10年,就变得无处不在。这过程可能需要花费50年,但重点是,在此过程中会有逐步推进,使它越来越灵活,更安全,更兼容我们组织运输网络的方式。炒作的错误在于人们的时标设定错了。他们期待太多事情太快发生,其实事物只在适当的时候。

关于深度学习的问题可以看下这个网页的视频讲解:AI深度学习---中科院公开课。

今天的关于深度学习编程基础的知识介绍就讲到这里,如果你还想了解更多这方面的信息,记得收藏关注本站。